
DragonTide Documentation
Release 0.9.0.a5

Charles J. Daniels

Mar 28, 2021

CONTENTS

1 Welcome to DragonTide! 3
1.1 About . 3
1.2 It’s Not For Everyone . 3
1.3 Quick Start . 3
1.4 How To Speak . 4

2 Concepts 5
2.1 Overview . 5
2.2 Registration . 5
2.3 Intros . 5
2.4 Literalization . 6
2.5 Translation . 7

3 Publicly Supported Objects 9

4 Grammars 11

5 Elements 13

6 Rules 17

7 Decorators 19

8 Glossary 21

9 Indices and tables 23

Python Module Index 25

Index 27

i

ii

DragonTide Documentation, Release 0.9.0.a5

Contents:

CONTENTS 1

DragonTide Documentation, Release 0.9.0.a5

2 CONTENTS

CHAPTER

ONE

WELCOME TO DRAGONTIDE!

1.1 About

The DragonTide library is a simple extension to dragonfly, a library to create rules or macros that work with Dragon
NaturallySpeaking or Windows Speech Recognition. DragonTide adds “out of the box” support for chaining multiple
commands in a row without pausing during speech. You are assumed to be familiar with dragonfly and its use.

1.2 It’s Not For Everyone

If you have existing voice commands whose words you absolutely do not want to alter, DragonTide might not be for
you, especially if those commands consist of hoots, made up words, or novel syllables. If you are willing to alter your
commands then little should get in your way. I recommend trying in any case rather than assuming the worst if you’re
interested in easy to add on chaining support, but thought you should know in advance it’s not equally great with all
scenarios.

You may want to read further details regarding The Effect Of Fluidity on command recognition, especially
if you have strange commands or commands you cannot or will not alter.

1.3 Quick Start

The easiest way to give it a whirl is to:

• use pip install DragonTide from the command line to install DragonTide, if Python pip is on your
path, otherwise it can be located in the Scripts folder of your Python installation or downloaded. For help
installing with pip, look here.

• or download and unzip a release from here and from the command line run the setup script using python
setup.py install assuming python.exe is on your path. For help installing, look here.

• once installed, import the following objects into your code,

from dragontide import GlobalRegistry, FluidRule, QuickFluidRules

• replace any Grammar class with GlobalRegistry ,

• replace any CompoundRule class with FluidRule,

• replace any MappingRule class with QuickFluidRules,

• reload your macro files!

3

http://dragonfly.readthedocs.org/en/latest/
http://dragonfly.readthedocs.org/en/latest/
https://pip.pypa.io/en/latest/installing.html
https://pypi.python.org/pypi/dragontide
https://docs.python.org/2/install/
https://dragonfly.readthedocs.io/en/latest/grammar.html#dragonfly.grammar.grammar_base.Grammar
https://dragonfly.readthedocs.io/en/latest/rules.html#dragonfly.grammar.rule_compound.CompoundRule
https://dragonfly.readthedocs.io/en/latest/rules.html#dragonfly.grammar.rule_mapping.MappingRule

DragonTide Documentation, Release 0.9.0.a5

You don’t have to change all your files at once, but chaining will generally occur only between DragonTide rule types
added to DragonTide grammars.

1.4 How To Speak

Just speak naturally. Don’t worry if pauses are needed, speak as if you trust they are not, and only then address the
situations where the intended functionality does not result.

However, now that you can speak multiple commands in a row, there is an additional need to say a literal tag before
anything that looks like a command but is not meant to be one. The default literal tag options are “literal”, “english”,
and “English”. For additional details see the literalization concept section.

4 Chapter 1. Welcome to DragonTide!

CHAPTER

TWO

CONCEPTS

2.1 Overview

DragonTide is primarily focused on one task – recognizing the occurrence of commands in the middle an utterance to
allow multiple commands to be spoken in a row without pauses.

When a rule is meant to allow chaining to other rules, it looks for registered commands embedded in the utterance that
triggered it, and when it encounters one, the whole utterance from that first command on is put aside. Once the rule
finishes processing, the put aside command portion is then mimic’ed. To the speech recognition system, the mimic
seems like you just spoke the command right then. And since what was mimic’ed might contain several chained
commands, each rule simply cuts off the part meant for it, and forwards the rest.

2.2 Registration

Registration is the recording of commands that are to be noticed from within the middle of an utterance. A Registry
holds this information and is consulted by rules that perform chaining when checking to see if an utterance has
embedded commands.

The most common use of a Registry is through the GlobalRegistry , which is a type of dragonfly Grammar.
It can be used across files and the rules will all see each other. It’s a good default choice. If you have a need to isolate
some rules, you can use a RegistryGrammar to hold those rules. A RegistryGrammar or the Registry it
holds can be used locally within a single file, or potentially used across a subset of files, but it has no awareness of
what is registered in the GlobalRegistry .

2.3 Intros

When a rule is registered, the initial fixed literal text of the command spec is determined and remembered to act as a
trigger that the command occurred. These triggers are referred to as the intros. This process is largely automatic, but
can be guided.

If a spec has only words and no extras elements, such as:

spec = "next page"
intros = ["next page"]

then the entire spec counts as the intro. If a spec has any extra elements in it, the intros stop at the first extra they
encounter. For instance:

spec = "go to page <page_number>"
intros = ["go to page"]

5

http://dragonfly.readthedocs.org/en/latest/engines.html?highlight=mimic#dragonfly.engines.base.EngineBase.mimic
http://dragonfly.readthedocs.org/en/latest/engines.html?highlight=mimic#dragonfly.engines.base.EngineBase.mimic
http://dragonfly.readthedocs.org/en/latest/engines.html?highlight=mimic#dragonfly.engines.base.EngineBase.mimic
http://dragonfly.readthedocs.org/en/latest/
https://dragonfly.readthedocs.io/en/latest/grammar.html#dragonfly.grammar.grammar_base.Grammar

DragonTide Documentation, Release 0.9.0.a5

This means that any commands whose spec begins with an extra will have an empty string as its intro, and therefore
will not be chained to from other commands.

Intros is plural, because there can be many:

spec = "(close|quit)"
intros = ["close", "quit"]

And it can get arbitrarily complex:

spec = "(go [to]|at) next line"
intros = ["go next line", "go to next line", "at next line"]

Each intro will be as long as possible until an extra is encountered:

spec = "(insert <part>|delete) below this line"
intros = ["insert", "delete below this line"]

Lastly, consider the following scenario:

spec = "copy <direction> word"
extras = (Choice("direction", {"left":"left", "right":"right"}),)
intros = ["copy"]

The automatic generation of intros stops at the direction extra, but we can tell that all cases can be determined in
advance. The following intros would result in less need for literal tags:

intros = ["copy left word", "copy right word"]

Rules that undergo registration allow you to supply the intros directly to override the automatically generated ones,
supplied either to the __init__ or as a class attribute, similar to the spec. So we could supply these improved upon
intros. There is a short cut option called intro_spec that, instead of supplying individual intros, lets you give a new
spec from which to derive them. Our original scenario would then look like:

spec = "copy <direction> word"
intros_spec = "copy (left|right) word"
extras = (Choice("direction", {"left":"left", "right":"right"}),)
intros = ["copy left word", "copy right word"]

When supplying intros, directly or through intros_spec, you must supply appropriate values, for if you have no “zixo”
command but you place that in a list of intros, if “zixo” occurs in the middle of an utterance, it will get mimic’ed
along with all that follows, the mimic will match no commands, and depending on your setup, that whole rest of the
utterance will be lost and must then be repeated.

2.4 Literalization

Literalization in the context of DragonTide is an indication that something said, even though it may look like a reg-
istered command, is actually intended as free speech dictation. This is accomplished by preceded these command
impostors with a spoken literal tag. The default options are “literal”, “english”, and “English”, and they are config-
urable. It is Registry’s that maintain and work with literal tags.

You don’t necessarily need to literalize every word that begins a command. If you have a command “drop previous
element <words>” in your arsenal but no other commands begin with the word drop, then you would not need to
literalize the word drop unless it was followed by the words “previous element”. So “drop me a line” could be said
plainly. Commands are recognized only by any one of their registered intros, avoiding any need for literalization when
possible.

6 Chapter 2. Concepts

http://dragonfly.readthedocs.org/en/latest/engines.html?highlight=mimic#dragonfly.engines.base.EngineBase.mimic

DragonTide Documentation, Release 0.9.0.a5

You can further minimize the need for literal tags by crafting your commands to not sound like things you tend to
dictate. Simple strategies include using rarer words or making commands sound more like headlines or Tarzan speak.

If you actually want to use a literal tag in free speech, just precede it by any literal tag, including itself. “English
English” and “literal English” both just translate to “English”.

When a literal tag has been literalized to serve as free speech dictation, it does not serve as a literal tag for what
follows.

2.5 Translation

Translation in the context of DragonTide is taking exact words spoken by the user that may or may not contain literal
tags, and producing the intended free speech that results from removing any literal tags whenever they are serving
the role of literal tags. This is the most common desired form when grabbing free speech dictation for use in the
processing of your rules, such as when outputting text to an entry field or document.

Translation happens behind the scenes in the Dictation elements of FluidRule’s. More advanced usage requires a
choice of translated versus non-traslated results, and SplitDictation objects can return either.

2.5. Translation 7

http://dragonfly.readthedocs.org/en/latest/elements.html?highlight=dictation#dictation-class

DragonTide Documentation, Release 0.9.0.a5

8 Chapter 2. Concepts

CHAPTER

THREE

PUBLICLY SUPPORTED OBJECTS

Below is an exhaustive list of the objects that will be imported upon calling:

from dragontide import *

They are mainly ordered by their likelihood of use. You should be familiar with at least the first four. Beyond that is
considered more advanced, but certainly can still be common place.

GlobalRegistry

FluidRule

QuickFluidRules

ActiveGrammarRule

SplitDictation

SplitForcedDictation

RegisteredRule

ContinuingRule

QuickFluidRule

RegistryGrammar

Registry

9

DragonTide Documentation, Release 0.9.0.a5

10 Chapter 3. Publicly Supported Objects

CHAPTER

FOUR

GRAMMARS

class GlobalRegistry(name, description=None, context=None, engine=None, **kwargs)
Bases: dragontide._grammars.RegistryGrammar

The GlobalRegistry is a RegistryGrammar with a single globally shared Registry . It can be used as the
Grammar object across many files, allowing the rules to know about each other for chaining.

__init__(name, description=None, context=None, engine=None, **kwargs)

Parameters

• name – Passed to dragonfly Grammar

• description – Passed to dragonfly Grammar

• context – Passed to dragonfly Grammar

• engine – Passed to dragonfly Grammar

• **kwargs – Passed to RegistryGrammar

class RegistryGrammar(name, registry=None, **kwargs)
Bases: dragonfly.grammar.grammar_base.Grammar

A RegistryGrammar is like a normal Grammar object, except it registers and unregisters RegisteredRule’s
as they are activated and deactivated, maintaining a registry of those that are currently active.

ContinuingRule’s that are added to this grammar will automatically use this object’s registry when seeking
out commands embedded in utterances.

__init__(name, registry=None, **kwargs)

Parameters

• name – Passed to dragonfly Grammar

• registry (Registry) – The Registry object that serves as the active Registration list.
It may be shared across RegistryGrammar instances. If None, a local Registry object is
created.

• **kwargs – Passed safely to dragonfly Grammar

activate_rule(rule)
Activate a rule loaded in this grammar.

Internal: this method is normally not called directly by the user, but instead automatically when the rule
itself is activated by the user.

deactivate_rule(rule)
Deactivate a rule loaded in this grammar.

11

http://dragonfly.readthedocs.org/en/latest/grammar.html#dragonfly.grammar.grammar_base.Grammar
http://dragonfly.readthedocs.org/en/latest/grammar.html#dragonfly.grammar.grammar_base.Grammar
http://dragonfly.readthedocs.org/en/latest/grammar.html#dragonfly.grammar.grammar_base.Grammar
http://dragonfly.readthedocs.org/en/latest/grammar.html#dragonfly.grammar.grammar_base.Grammar
http://dragonfly.readthedocs.org/en/latest/grammar.html#dragonfly.grammar.grammar_base.Grammar
https://dragonfly.readthedocs.io/en/latest/grammar.html#dragonfly.grammar.grammar_base.Grammar
http://dragonfly.readthedocs.org/en/latest/grammar.html#dragonfly.grammar.grammar_base.Grammar
http://dragonfly.readthedocs.org/en/latest/grammar.html#dragonfly.grammar.grammar_base.Grammar
http://dragonfly.readthedocs.org/en/latest/grammar.html#dragonfly.grammar.grammar_base.Grammar

DragonTide Documentation, Release 0.9.0.a5

Internal: this method is normally not called directly by the user, but instead automatically when the rule
itself is deactivated by the user.

unload()
Unload this grammar from its SR engine.

class Registry(literal_tags=['English', 'english', 'literal'], override_tags=False)
A registry maintains information about a set of known active rules and the literal tags that must precede their
intros when their commands are meant as free speech dictation.

Working directly with a Registry object is an advanced use case.

A registry exposes services regarding inspection and parsing of utterances as it relates to its literal tags and
currently actively registered commands.

__init__(literal_tags=['English', 'english', 'literal'], override_tags=False)

Parameters

• literal_tags (string list) – These words will function as literalization markers
to indicate that what follows is not a command, but rather free speech dictation.

• override_tags (bool) – If False, the literal_tags supplied to __init__ will be added
to the defaults, otherwise they will replace them.

literal_tags = ['English', 'english', 'literal']
Literal tags are used during speech to indicate that what follows is not a command. Registry object’s
initialize with these default values.

translate_literals(words_iterable)
Returns a list of words, stripped of literal tags in a semantically meaningful way. Final isolated literal_tag’s
are stripped.

When a literal_tag precedes a literal_tag, the second occurrence only is retained.

In a string of all literal_tag’s, exactly the odd indexed ones (in a 0-indexed sense) would be returned.

register_rule(rule)
Adds the rule to a list of known active rules. Not generally called directly by users. For more information
see the registration concept section.

unregister_rule(rule)
Removes the rule from the list of known active rules. Not generally called directly by users.

is_registered(intro)

Parameters command_intro (string) – A command intro to test for registration.

Returns True if registered, False otherwise

Return type bool

has_partial(partial_command)
Returns True if the string supplied is an initial substring of a registered intro, assuming only full words are
supplied.

starts_with_registered(words_iterable)
Returns True if the iterable of strings begins with the words of a registered command.

12 Chapter 4. Grammars

CHAPTER

FIVE

ELEMENTS

class SplitDictation(name, registry=None, forced_dictation=False, **kwargs)
A rule element used to split recognized dictation into an initial free dictation part, and a following command
part. Either part is optional, unless the element is initialized with the forced_dictation element to True.

The following example shows this element being used and retrieved in the standard expected way.

from dragontide import RegistryRule, SplitDictation

class SplitterRule(RegistryRule):
spec = "set name <name_split>"
extras = (SplitDictation("name_split"),)
def _process_recognition(self, node, extras):

name_split = extras["name_split"]
name = name_split.dictation

The result is a type of container from which parts of the result may be retrieved. The full list of attributes are
individually documented below, but a simple naming scheme is in place. The first part of the attribute name
indicates the part desired:

• full - The entire utterance

• dictation - The utterance only up to the first accepted command, may be the empty string if the utterance
began with an accepted command

• command - The rest of the utterance starting with the first accepted command, through the end of the
utterance

The second part indicates the return type desired:

• _words - A string list of the words

• _container - The same type of dictation container that a Dictation element would yield, some derived class
of BaseDictationContainer as appropriate for the speech recognition system in use.

• default - If neither of the above are indicated, the default result type is a string.

The third part indicates whether literal tags should be retained or translated out:

• _notrans - Retain the literal tags

• _trans - Strip literal tags and return only the intended content

• default - If neither of the above are indicated, the result will have the default behavior most common when
using the part requested. full and command parts will retain literal tags, while dictation parts will strip
them so as to only return the intended free speech. Default translation of the parts applies to all return
types.

13

DragonTide Documentation, Release 0.9.0.a5

There is also an issue of formatting. The various dictation containers have a formatting option. For Windows
Speech Recognition there is no real formatting provided beyond separating words with spaces. Dragon Natu-
rallySpeaking provides more sophisticated formatting. All return types except for the _container values have
formatting applied to the result returned. If you absolutely do not want the formatting applied, you must request
the containers directly, from which you can choose to apply formatting or not. If you choose a _trans container,
it will have had literal tags stripped, but otherwise be unmodified.

__init__(name, registry=None, forced_dictation=False, **kwargs)

Parameters

• name (string) – The name of this element, used as the keyname in the extras dictionary
passed back to _process_recognition

• registry (Registry) – The Registry instance that determines what words form
a command and what literal tags are in effect. If None, the ActiveGrammarRule
decorator will set the registry of any RegistryGrammar derived instance the containing
rule is added to.

• forced_dictation (bool) – When True, refuses to recognize utterance-initial com-
mands, so as to ensure this element returns non-empty free dictation.

• kwargs – Passed safely to Dictation.__init__

value(node)
Determine the semantic value of this element given the recognition results stored in the node.

Argument:

• node – a dragonfly.grammar.state.Node instance representing this element within the
recognition parse tree

The default behavior of this method is to return an iterable containing the recognized words matched by
this element (i.e. node.words()).

property command_index
Returns the 0-based word index at which the first accepted full command intro occurs, or the index beyond
last if no such intro occurs. If forced_dictation was set True during initialization, any utterance-initial
command will be skipped to ensure dictation content is non-empty.

translate(words_iterable)
Returns a word list, as translated.

property full
Alias for full_notrans.

property full_notrans
Returns the full content, as a string, with formatting applied and with literal tags retained.

property full_trans
Returns the full content, as a string, with formatting applied and with literal tags translated to their intended
result.

property full_words
Alias for full_words_notrans.

property full_words_notrans
Returns the full content, as a word list, with formatting applied and with literal tags retained.

property full_words_trans
Returns the full content, as a word list, with formatting applied and with literal tags translated to their
intended result.

14 Chapter 5. Elements

DragonTide Documentation, Release 0.9.0.a5

property full_container
Alias for full_container_notrans.

property full_container_notrans
Returns the full content, as a BaseDictationContainer of the appropriate type given the speech recognition
system in use, without any alterations of any sort applied to the container contents.

property full_container_trans
Returns the full content, as a BaseDictationContainer of the appropriate type given the speech recognition
system in use, with no formatting applied yet with literal tags translated to their intended result.

property dictation
Alias for dictation_trans.

property dictation_trans
Returns any and all content up to the first full command intro, if any. Content is returned as a string with
formatting and with literal tags translated to their intended result.

property dictation_notrans
Returns any and all content up to the first full command intro, if any. Content is returned as a string with
formatting and with literal tags retained.

property dictation_words
Alias for dictation_words_trans.

property dictation_words_trans
Returns any and all content up to the first full command intro, if any. Content is returned as a word list
with formatting and with literal tags translated to their intended result.

property dictation_words_notrans
Returns any and all content up to the first full command intro, if any. Content is returned as a word list
with formatting and with literal tags retained.

property dictation_container
Alias for dictation_container_trans.

property dictation_container_notrans
Returns any and all content up to the first full command intro, if any. Content is returned as a BaseDicta-
tionContainer of the appropriate type given the speech recognition system in use, without any alterations
of any sort applied to the container contents.

property dictation_container_trans
Returns any and all content up to the first full command intro, if any. Content is returned as a BaseDic-
tationContainer of the appropriate type given the speech recognition system in use, with no formatting
applied yet with literal tags translated to their intended result.

property command
Alias for command_notrans

property command_notrans
Returns any and all content starting from first full command intro, if any. Content is returned as a string
with formatting and with literal tags retained.

property command_trans
Returns any and all content starting from first full command intro, if any. Content is returned as a string
with formatting and with literal tags retained.

property command_words
Alias for command_words_notrans

15

DragonTide Documentation, Release 0.9.0.a5

property command_words_notrans
Returns any and all content starting from first full command intro, if any. Content is returned as a word list
with formatting and with literal tags retained.

property command_words_trans
Returns any and all content starting from first full command intro, if any. Content is returned as a word list
with formatting and with literal tags translated to their intended result.

property command_container
Alias for command_container_notrans

property command_container_notrans
Returns any and all content starting from first full command intro, if any. Content is returned as a BaseDic-
tationContainer of the appropriate type given the speech recognition system in use, without any alterations
of any sort applied to the container contents.

property command_container_trans
Returns any and all content starting from first full command intro, if any. Content is returned as a Base-
DictationContainer of the appropriate type given the speech recognition system in use, with no formatting
applied yet with literal tags translated to their intended result.

class SplitForcedDictation(name, registry=None, **kwargs)
A SplitDictation with forced_dictation set to True, guaranteed to return a value for dictation, even if it must
ignore an utterance-initial command from which to provide it.

__init__(name, registry=None, **kwargs)

Parameters

• name (string) – The name of this element, used as the keyname in the extras dictionary
passed back to _process_recognition

• registry (_Registry) – The _Registry instance that determines what words form a
command

• kwargs – Passed safely to SplitDictation

16 Chapter 5. Elements

CHAPTER

SIX

RULES

class FluidRule(**kwargs)
Bases: dragontide._rules.RegisteredRule, dragontide._rules.ContinuingRule

A FluidRule is both a RegisteredRule and a ContinuingRule, meaning it can be chained to from other
commands, and then chain off to further commands. This is the most common case, for general use unless you
have specific needs. These always attempt to chain automatically.

It must be added to a RegistryGrammar, such as the GlobalRegistry , to enabled all features.

__init__(**kwargs)

Parameters **kwargs – passed to ContinuingRule and RegisteredRule

class QuickFluidRules(grammar)
Used like a MappingRule but results in FluidRule’s rather than simple CompoundRule‘s.

The mapping attribute is extended. In addition to the normal key/value pairs of spec/action, a value may also
be a list or tuple whose first element is the usual action, and whose second element is a dict of parameters to be
passed as **kwargs to QuickFluidRule.

__init__(grammar)
Not usually called directly, but rather via ActiveGrammarRule.

Parameters grammar – The Grammar to add rules to, generally a RegistryGrammar such
as the GlobalRegistry .

class RegisteredRule(intros=None, intros_spec=None, **kwargs)
A rule that can undergo registration to allow its command to be noticed in the middle of an utterance, al-
lowing other commands to pass off to this rule. It must be added to a RegistryGrammar, such as the
GlobalRegistry , for the registration to actually be performed. Otherwise, it acts like a normal Com-
poundRule.

__init__(intros=None, intros_spec=None, **kwargs)
For information regarding intros and intros_spec, refer to the intros documentation.

Parameters

• intros (string, string list, or None) – If None, the command intros will
be automatically determined from the spec, otherwise any string provided, by itself or in
a list, will be registered as an intro of the command. If supplied, overrides any provided
intros_spec.

• intros_spec (string) – If supplied, will be parsed to obtained the intros for the
command, similar in manner to how spec is parsed.

• **kwargs – passed safely to CompoundRule

17

http://dragonfly.readthedocs.org/en/latest/rules.html#mappingrule-class
http://dragonfly.readthedocs.org/en/latest/rules.html#compoundrule-class
http://dragonfly.readthedocs.org/en/latest/rules.html#compoundrule-class
http://dragonfly.readthedocs.org/en/latest/rules.html#compoundrule-class
http://dragonfly.readthedocs.org/en/latest/rules.html#compoundrule-class

DragonTide Documentation, Release 0.9.0.a5

class ContinuingRule(**kwargs)
A rule that automatically looks for embedded commands and chains to them. It must be added to a
RegistryGrammar, such as the GlobalRegistry to enable all features.

__init__(**kwargs)

Parameters **kwargs – passed safely to CompoundRule

class QuickFluidRule(spec, action, args={}, **kwargs)
Bases: dragontide._rules.FluidRule

A shortcut to assign an action to a spec.

Example:

rule = QuickFluidRule("press home key", Key("home"))

__init__(spec, action, args={}, **kwargs)

Parameters

• spec (string) – The spec for this command, from which intros will be determined.

• action (a dragonfly action) – The action to be executed when this command is said.

• args (dict) – Provides a way to add to or modify the extras dictionary. The args dic-
tionary has keys of name strings, items of function callbacks. The callbacks are supplied
a single parameter of a dictionary of extras, and their return value is assigned to the extra
named by the key. When the action is executed, it will then have these final values
available to it.

• **kwargs – Passed to FluidRule, except "name" and "spec" ignored.

18 Chapter 6. Rules

http://dragonfly.readthedocs.org/en/latest/rules.html#compoundrule-class
http://dragonfly.readthedocs.org/en/latest/actions.html
http://dragonfly.readthedocs.org/en/latest/actions.html

CHAPTER

SEVEN

DECORATORS

ActiveGrammarRule(grammar)
A rule class decorator to automatically instantiate and add the rule to the grammar specified.

Example:

from dragonfly import Grammar, CompoundRule, MappingRule
from dragontide import ActiveGrammarRule, FluidRule, QuickFluidRules

my_grammar_instance = Grammar("my_grammar")

@ActiveGrammarRule(my_grammar_instance)
class MyRule(CompoundRule):

pass

@ActiveGrammarRule(my_grammar_instance)
class MyRules(MappingRule):

pass

@ActiveGrammarRule(my_grammar_instance)
class MyFluidRule(FluidRule):

pass

@ActiveGrammarRule(my_grammar_instance)
class MyQuickRules(QuickFluidRules):

pass

19

DragonTide Documentation, Release 0.9.0.a5

20 Chapter 7. Decorators

CHAPTER

EIGHT

GLOSSARY

chaining The ability to invoke multiple recognition elements in a row by speaking them as a single utterance, i.e.
without pausing between them. In DragonTide, chains may be of any length. Depending on the scenario, two
neighboring chained elements may be comprised of free speech dictation and a command, in either order, or a
pair of commands.

Only rules derived from ContinuingRule will pass off, or chain, to successive commands.

command action The action executed when a rule is triggered by its command.

command Spoken content within an utterance that is meant to trigger the execution of a command action. Often
specified in the form of a spec. In contrast with dictation.

dictation

free speech dictation Spoken content within an utterance that is meant to be captured as its textual representation,
generally as a means to supply content to a command action, such as for printing to the screen. In contrast with
a command.

dictation container A type of value produced by a Dictation element, derived from
DictationContainerBase, and specific to the speech recognition system in use. The elements
provided by DragonTide, such a SplitDictation can also return these containers upon request.

embedded command A command within an utterance that does not occur at the beginning of the utterance.

extras Broadly speaking, an extra is a part of a command that hears and results in a certain type of content.

An extra uses a named element, derived from ElementBase, and provides a value, such as text or a dictation
container. Dragonfly documentation provides a list of elements.

It is often used here as a term for the dictionary of extras passed to the _process_recognition callback of a
rule. You are generally expected to know how to access the various extras from this dictionary, and when
documentation states that extras are passed to or returned from a function, the form implied is this dictionary.
Note that this dictionary generally does not container the underlying element that generates a value, so extras
are distinct from elements, with extras using elements and producing values under the same name.

intro

command intro The initial part of a command’s spec, consisting only of static literal words, up to the first encountered
extra reference in angle brackets. For further details see the intros concept section.

literal tag A word spoken within an utterance to specific that what follows is free speech dictation even when it looks
a command or literal tag. For further details see the literalization concept section.

registered command A command that can be triggered from within the middle of an utterance. For further details
see the registration concept section.

rule

macro A triggerable event. The trigger is the command and the event triggered is the command action.

21

https://dragonfly.readthedocs.io/en/latest/elements.html#dragonfly.grammar.elements_basic.Dictation
https://dragonfly.readthedocs.io/en/latest/engines.html#dragonfly.engines.base.dictation.DictationContainerBase
https://dragonfly.readthedocs.io/en/latest/elements.html#dragonfly.grammar.elements_basic.ElementBase
https://dragonfly.readthedocs.io/en/latest/elements.html#refelementclasses

DragonTide Documentation, Release 0.9.0.a5

spec A common dragonfly attribute that determines which spoken words will trigger a rule. It may be a fixed literal
command spec, such as “show desktop”, or it may include references to extras in angle brackets, such as “delete
left <characterCount> characters”.

utterance The contiguous stream of spoken content captured by your speech recognition system starting from the
moment your it determines you have begun speaking through until the moment it encounters enough silence to
qualify as a pause given its configuration.

22 Chapter 8. Glossary

http://dragonfly.readthedocs.org/en/latest/

CHAPTER

NINE

INDICES AND TABLES

• genindex

• modindex

• search

23

DragonTide Documentation, Release 0.9.0.a5

24 Chapter 9. Indices and tables

PYTHON MODULE INDEX

d
dragontide, 9
dragontide._decorators, 19
dragontide._elements, 13

25

DragonTide Documentation, Release 0.9.0.a5

26 Python Module Index

INDEX

Symbols
__init__() (ContinuingRule method), 18
__init__() (FluidRule method), 17
__init__() (GlobalRegistry method), 11
__init__() (QuickFluidRule method), 18
__init__() (QuickFluidRules method), 17
__init__() (RegisteredRule method), 17
__init__() (Registry method), 12
__init__() (RegistryGrammar method), 11
__init__() (SplitDictation method), 14
__init__() (SplitForcedDictation method), 16

A
activate_rule() (RegistryGrammar method), 11
ActiveGrammarRule() (in module dragon-

tide._decorators), 19

C
chaining, 21
command, 21
command action, 21
command intro, 21
command() (SplitDictation property), 15
command_container() (SplitDictation property), 16
command_container_notrans() (SplitDictation

property), 16
command_container_trans() (SplitDictation

property), 16
command_index() (SplitDictation property), 14
command_notrans() (SplitDictation property), 15
command_trans() (SplitDictation property), 15
command_words() (SplitDictation property), 15
command_words_notrans() (SplitDictation prop-

erty), 15
command_words_trans() (SplitDictation property),

16
ContinuingRule (class in dragontide._rules), 17

D
deactivate_rule() (RegistryGrammar method), 11
dictation, 21
dictation container, 21

dictation() (SplitDictation property), 15
dictation_container() (SplitDictation property),

15
dictation_container_notrans() (SplitDicta-

tion property), 15
dictation_container_trans() (SplitDictation

property), 15
dictation_notrans() (SplitDictation property), 15
dictation_trans() (SplitDictation property), 15
dictation_words() (SplitDictation property), 15
dictation_words_notrans() (SplitDictation

property), 15
dictation_words_trans() (SplitDictation prop-

erty), 15
dragontide

module, 9
dragontide._decorators

module, 19
dragontide._elements

module, 13

E
embedded command, 21
extras, 21

F
FluidRule (class in dragontide._rules), 17
free speech dictation, 21
full() (SplitDictation property), 14
full_container() (SplitDictation property), 14
full_container_notrans() (SplitDictation prop-

erty), 15
full_container_trans() (SplitDictation prop-

erty), 15
full_notrans() (SplitDictation property), 14
full_trans() (SplitDictation property), 14
full_words() (SplitDictation property), 14
full_words_notrans() (SplitDictation property),

14
full_words_trans() (SplitDictation property), 14

G
GlobalRegistry (class in dragontide._grammars),

27

DragonTide Documentation, Release 0.9.0.a5

11

H
has_partial() (Registry method), 12

I
intro, 21
is_registered() (Registry method), 12

L
literal tag, 21
literal_tags (Registry attribute), 12

M
macro, 21
module

dragontide, 9
dragontide._decorators, 19
dragontide._elements, 13

Q
QuickFluidRule (class in dragontide._rules), 18
QuickFluidRules (class in dragontide._rules), 17

R
register_rule() (Registry method), 12
registered command, 21
RegisteredRule (class in dragontide._rules), 17
Registry (class in dragontide._grammars), 12
RegistryGrammar (class in dragontide._grammars),

11
rule, 21

S
spec, 22
SplitDictation (class in dragontide._elements), 13
SplitForcedDictation (class in dragon-

tide._elements), 16
starts_with_registered() (Registry method),

12

T
translate() (SplitDictation method), 14
translate_literals() (Registry method), 12

U
unload() (RegistryGrammar method), 12
unregister_rule() (Registry method), 12
utterance, 22

V
value() (SplitDictation method), 14

28 Index

	Welcome to DragonTide!
	About
	It’s Not For Everyone
	Quick Start
	How To Speak

	Concepts
	Overview
	Registration
	Intros
	Literalization
	Translation

	Publicly Supported Objects
	Grammars
	Elements
	Rules
	Decorators
	Glossary
	Indices and tables
	Python Module Index
	Index

